翻訳と辞書
Words near each other
・ Hilbert transform
・ Hilbert van der Duim
・ Hilbert Van Dijk
・ Hilbert Wildlife Management Area
・ Hilbert's arithmetic of ends
・ Hilbert's axioms
・ Hilbert's basis theorem
・ Hilbert's eighteenth problem
・ Hilbert's eighth problem
・ Hilbert's eleventh problem
・ Hilbert's fifteenth problem
・ Hilbert's fifth problem
・ Hilbert's fourteenth problem
・ Hilbert's fourth problem
・ Hilbert's inequality
Hilbert's irreducibility theorem
・ Hilbert's lemma
・ Hilbert's nineteenth problem
・ Hilbert's ninth problem
・ Hilbert's Nullstellensatz
・ Hilbert's paradox of the Grand Hotel
・ Hilbert's problems
・ Hilbert's program
・ Hilbert's second problem
・ Hilbert's seventeenth problem
・ Hilbert's seventh problem
・ Hilbert's sixteenth problem
・ Hilbert's sixth problem
・ Hilbert's syzygy theorem
・ Hilbert's tenth problem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hilbert's irreducibility theorem : ウィキペディア英語版
Hilbert's irreducibility theorem

In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert, states that every finite number of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.
== Formulation of the theorem ==
Hilbert's irreducibility theorem. Let
: f_1(X_1,\ldots, X_r, Y_1,\ldots, Y_s), \ldots, f_n(X_1,\ldots, X_r, Y_1,\ldots, Y_s) \,
be irreducible polynomials in the ring
: \mathbb(X_r, Y_1,\ldots, Y_s ). \,
Then there exists an ''r''-tuple of rational numbers (''a''1,...,''a''''r'') such that
: f_1(a_1,\ldots, a_r, Y_1,\ldots, Y_s), \ldots, f_n(a_1,\ldots, a_r, Y_1,\ldots, Y_s) \,
are irreducible in the ring
: \mathbb(Y_s ). \,
Remarks.
* It follows from the theorem that there are infinitely many ''r''-tuples. In fact the set of all irreducible specialization, called Hilbert set, is large in many senses. For example, this set is Zariski dense in \mathbb Q^r.
* There are always (infinitely many) integer specializations, i.e., the assertion of the theorem holds even if we demand (''a''1,...,''a''''r'') to be integers.
* There are many Hilbertian fields, i.e., fields satisfying Hilbert's irreducibility theorem. For example, global fields are Hilbertian.〔Lang (1997) p.41〕
* The irreducible specialization property stated in the theorem is the most general. There are many reductions, e.g., it suffices to take n=r=s=1 in the definition. A recent result of Bary-Soroker shows that for a field ''K'' to be Hilbertian it suffices to consider the case of n=r=s=1 and f=f_1 absolutely irreducible, that is, irreducible in the ring ''K''alg(), where ''K''alg is the algebraic closure of ''K''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hilbert's irreducibility theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.